首页 | 本学科首页   官方微博 | 高级检索  
     


Effects of Al concentration and resulting long-period superstructures on the plastic properties at room temperature of Al-rich TiAl single crystals
Authors:T. Nakano   K. Hayashi  Y. Umakoshi  Y.-L. Chiu  P. Veyssière
Affiliation:1. Department of Materials Science and Engineering and Handai Frontier Research Center , Graduate School of Engineering, Osaka University , 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan;2. Laboratoire d'Etude des Microstructures , CNRS-ONERA , BP72, 92322 Chatillon Cedex, France
Abstract:The role of Al5Ti3 and h-Al2Ti long-period superstructures on the plastic properties of TiAl at room temperature is investigated on five single crystals with aluminium content comprised between 54.7 at.%, and 62.5 at.%. After annealing at 1200°C for 1?h, the Al5Ti3 superstructure develops in the L10 (γ) matrix upon increasing Al concentration except for Ti–62.5 at.%Al where h-Al2Ti substitutes for Al5Ti3. The CRSS for <110]{111} first increases abruptly with the development of the Al5Ti3-type ordering. Then, the CRSS reaches a plateau at which dislocations assemble in groups of four to prevent extra anti-phase boundary (APB) from being engendered during glide throughout the Al5Ti3 phase. In Ti–62.5 at.%Al, the CRSS for ordinary slip further increases upon the precipitation of h-Al2Ti in the L10 phase, whereas it decreases when the crystal is fully transformed into single-phased Al5Ti3. <101] superlattice dislocations are primarily activated under both the [210] and [1?1?8.6] load orientations irrespective of the Al concentration, but the dislocation microstructure strongly depends on orientation as well as on the degree of Al5Ti3 ordering. In the [210] orientation, the frequency of the decomposition of <101] dislocations into 1/2<110] and 1/2<112] dislocations decreases abruptly with the development of Al5Ti3. This is interpreted in terms of the increased difficulty to move ordinary dislocations. Under the [1?1?8.6] orientation, the density of faulted dipoles diminishes remarkably with the development of Al5Ti3. This is consistent with the transformation of the low energy extrinsic stacking fault of the L10 phase into a higher energy complex extrinsic stacking fault.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号