首页 | 本学科首页   官方微博 | 高级检索  
     检索      


An extensive 3D dislocation dynamics investigation of stage-I fatigue crack propagation
Authors:C Déprés  GV Prasad Reddy  C Robertson  M Fivel
Institution:1. SYMME, Université Savoie Mont Blanc, F-74000 Annecy, Francechristophe.depres@univ-savoie.fr;3. SYMME, Université Savoie Mont Blanc, F-74000 Annecy, France;4. Mechanical Metallurgy Division, Indira Gandhi Center for Atomic Research, Kalpakkam, 603102 Tamil Nadu, India;5. Service de Recherche de Métallurgie Appliquée, CEA Saclay, 91191 Gif-sur-Yvette, Paris, France;6. SIMAP-GPM2, Université Grenoble Alpes-CNRS, F-38000 Grenoble, France
Abstract:Stage-I fatigue crack propagation is investigated using 3D discrete dislocation dynamics (DD) simulations. Slip-based propagation mechanisms and the role of the pre-existing slip band on the crack path are emphasized. Stage-I crack growth is found to be compatible with successive decohesion of the persistent slip band/matrix interface rather than a mere effect of plastic irreversibility. Corresponding crack tip slip displacement magnitude and the associated crack growth rate are evaluated quantitatively at various tip distances from the grain boundary. This shows that grain boundaries systematically amplify slip dispersion ahead of the crack tip and consequently, slow down the stage-I crack growth rate. The results help in developing an original crack propagation model, accounting for the boundary effects relevant to polycrystals. The crack growth trend is then evaluated from calculations of the energy changes due to crack length increments. It is shown that the crack necessarily propagates by increments smaller than 10 nm.
Keywords:dislocation dynamics  crack growth  fatigue
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号