首页 | 本学科首页   官方微博 | 高级检索  
     


The turbulent wake of a circular cylinder rotating about the streamwise axis
Authors:D. H. Wood  P. L. Peterson  P. D. Clausen
Affiliation:(1) Department of Mechanical Engineering, University of Newcastle, 2308 Callaghan, N.S.W., Australia
Abstract:This paper presents measurements in the turbulent wake of a circular cylinder rotating with its axis normal to the free-stream velocity; in other words, the axis of rotation was parallel to the streamwise direction. All three mean velocities and six Reynolds stresses were obtained at three positions downstream of the cylinder, with and without rotation of the free-stream. Most emphasis is given to the latter results because of the better flow quality. The ratio of the circumferential velocity of the cylinder to the free-stream velocity — the swirl number — had a maximum value of 0.6. Measurements for two combinations of the free-stream and angular velocities showed the velocity deficit in the wake to be a multi-valued function of the swirl number, implying that the rotation affected the separation of the cylinder's boundary layer in a complex manner. In the turbulent wake, the rotation did not significantly alter the magnitudes of the normal stresses, but caused large changes to the shape of the profiles of the axial and cross-stream normal stresses. Eventually, the primary (cross-stream) shear stress became almost entirely positive, but there was no corresponding change to the (cross-stream) gradient of the streamwise mean velocity. Despite these alterations to the turbulence, the rotationally-activated generation terms in the Reynolds transport equations never dominated the terms that are common to the wakes of rotating and non-rotating cylinders.This work was supported by the Australian Research Council. Most of the data acquisition software was written by Mr J. J. Smith.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号