aDepartment of Engineering Mechanics, Xi’an Jiaotong University, Xi’an 710049, Shaanxi Province, China
bDepartment of Mechanical and Control Engineering, Tokyo Institute of Technology 2-12-1, O-okayama, Meguro-ku, Tokyo 152-8552, Japan
Abstract:
The scattering behavior of P-waves in piezoelectric composites with 1–3 connectivity is studied. The method of wave function expansion is adopted for the theoretical derivations. Analytical expressions are obtained for the distributions of mechanical displacement in z-direction along the circumferences of piezoelectric cylinders. These solutions are used to study the influence of each element of the stiffness matrix and the piezoelectric matrix on the various resonant modes of vibration. Numerical results obtained indicate that perturbations of the elements c44 and e15 significantly affect resonant frequencies and amplitudes, perturbations of c11 and c12 have pronounced effects on resonant modes of high frequencies also. However, the resonant modes are not so sensitive to the perturbations of c13, e31 and e33. The dynamic characteristics of 1–3 connectivity piezoelectric composites exposed here are meaningful for the design and manufacture of sensor/actuator elements by this kind of composites as well as the on-line health monitoring of the mechanical properties variations of the composites itself.