首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Ab-initio calculations on large molecules and solids by desirable computational procedures
Authors:Joyce J Kaufman
Institution:Department of Chemistry, The Johns Hopkins University, Baltimore, MD 21218 U.S.A.
Abstract:Desirable computational procedures developed here recently for ab-initio calculations on large molecules are outlined. Effective core model potentials (MODPOT) permit calculations of valence electrons only explicitly, yet accurately; a charge-conserving integral prescreening evaluation to decide whether a block of integrals will be larger than a preset threshold and thus be calculated explicitly is effective for spatially extended systems; an efficient MERGE technique to save and reuse common invariant skeletal integrals is useful for geometry variations and for adding basis fcuntions, substituent groups and molecules; and an effective configuration interaction (CI) Hamiltonian into which are folded the effects of the occupied molecular orbitals from which no excitations are allowed is useful for molecular decompositions and intermolecular reactions. These techniques have been extended for CI calculations on breaking a chemical bond in a molecule in a crystal or solid; atom-class/atomic-class potential functions and dispersion calculations have been added. In a new program, POLY-CRYST, all the integral strategies for large molecules are meshed.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号