首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The water-exchange mechanism of the [UO(2)(OH(2))(5)](2+) ion revisited: the importance of a proper treatment of electron correlation
Authors:Rotzinger François P
Institution:Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 6, 1015 Lausanne, Switzerland. francois.rotzinger@epfl.ch
Abstract:The water-exchange mechanism of UO(2)(OH(2))(5)](2+) has been reinvestigated by using ab initio molecular orbital (MO) methods. The geometries and the vibrational frequencies were computed with CAS-SCF(12/11)-SCRF and CAS-SCF(12/11)-PCM methods, which take into account static electron correlation (using the complete active space self-consistent field (CAS-SCF) technique, based on an active space of 12 electrons in 11 orbitals) and hydration (using the self-consistent reaction field (SCRF) and polarizable continuum model (PCM) techniques). The total energies were computed with multiconfiguration quasi-degenerate second-order perturbation theory, the MCQDPT2(12/11)-PCM method, which treats static and dynamic electron correlation as well as hydration. The adequacies of other currently used quantum chemical methods, MP2, CCSD(T), B3 LYP, and BLYP, are discussed. For the associative and dissociative pathways, thermodynamic activation parameters (DeltaH( not equal), DeltaS( not equal), and DeltaG( not equal)) were computed. For the associative mechanism, the calculated DeltaH( not equal) and DeltaG( not equal) values agree with experiment, whereas for the dissociative mechanism, they are higher by approximately 20 kJ mol(-1). The dissociative mechanism is preferred for substitution reactions of uranyl(VI) complexes with ligands that are stronger electron donors than water. The question of whether a concerted (I(a) or I(d)) or a stepwise (A or D) mechanism operates is discussed on the basis of the computed lifetime of the respective intermediate, and the duration of the vibration with which the intermediate is transformed into the product.
Keywords:ab initio calculations  ligand effects  quantum chemical calculations  substitution mechanisms  uranium  water chemistry
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号