首页 | 本学科首页   官方微博 | 高级检索  
     检索      

Cu-In二元金属催化剂上CO_2电化学还原 (英文)
摘    要:石油、天然气和煤等化石能源的转化利用不可避免排放大量的CO_2,造成一系列生态和环境问题.CO_2电化学还原可以在温和反应条件下将CO_2转化为CO或甲酸等,近年来受到研究者广泛关注,但因CO_2具有很稳定的化学结构,CO_2电化学还原要求催化剂具有高的活性,选择性和稳定性.贵金属如金和钯可以有效地将CO_2转化为相应的燃料如CO和甲酸等,但贵金属昂贵的价格限制了其大规模应用,所以迫使人们寻找非贵金属催化剂来替代它们.铟及其合金被应用于CO_2电化学还原生成甲酸,但在低过电位下,这些催化剂的电流密度和选择性都不理想.铜基催化剂也能催化CO_2电化学还原生成甲酸,但在短时间内稳定性较差.因此,需要进一步提高In和Cu催化剂上CO_2电化学还原的电流密度和稳定性.一种可能的解决方案是构建Cu-In双金属催化剂,通过两者的协同作用,有望提升在低过电位下CO_2电化学还原生成甲酸的电流密度和稳定性.在本工作中,我们通过氢气模板法制备出具有树枝状结构的Cu,然后在其表面均匀电沉积金属In.通过两步电沉积法制备出一种具有树枝状结构的Cu-In二元金属催化剂.控制电沉积In的时长分别为1.5,7.5,15,30和60 min.根据SEM及EDX元素分布图谱可知,随着电沉积In时间的增加,In在Cu表面的覆盖率逐渐增高.我们还研究了In的电沉积时间与其电化学活性表面积(ESA)之间的关系.结果表明,In的电沉积时间与其电化学活性表面积成正比,且当电沉积时间达到30 min时,电极具有最大的电化学活性表面积.具有树枝状结构的Cu-In-30催化剂ESA数值为8.7 cm~2,而不具备树枝状结构的In-30催化剂的ESA数值仅为2.4 cm~2.在-0.65 V vs.RHE至-1.05 V vs.RHE电位窗口中,与其它催化剂相比,Cu-In-30催化剂上CO_2电化学还原生成甲酸的法拉第效率最高可达87.4%.树枝状结构的Cu-In-30催化剂由于具有开放的三维结构,所以能够暴露出更多的活性位,从而提高了催化剂的电化学性能.在-0.85 V vs.RHE电位下,甲酸分电流密度可达42.0 m A cm~(-2),且具有较高的电化学稳定性(12 h).而不具有树枝状结构的In-30催化剂生成甲酸的法拉第效率为57.0%,且甲酸分电流密度为4.6 m A cm~(-2).

本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号