首页 | 本学科首页   官方微博 | 高级检索  
     


Analysis,design and simulation of MIM plasmonic filters with different geometries for technical parameters improvement
Authors:Sara Gholinezhad Shafagh  Hassan Kaatuzian  Mohammad Danaie
Affiliation:1.Photonics Research Laboratory (PRL), Electrical Engineering Department, Amirkabir University of Technology, Tehran, Iran;2.Electrical and Computer Engineering Faculty, Semnan University, Semnan, Iran
Abstract:In this paper, four optical filter topologies based on metal–insulator–metal waveguides are proposed and the designed structures are investigated numerically using finite-difference time-domain method. Triangular-shaped adjunctions have been added to the filter structures to improve their transmission spectrum. These improved structures consist of air as the insulator and silver as the metal. The relative permittivity of metal has been described via the Drude, Drude–Lorentz, and Palik models. The first filter's transmission spectrum shows an acceptable transmittance. In the second optimized filter, the transmission spectrum has been improved. The transmittance spectrum can be tuned through adjusting the edge of the triangle in these four optimized filters. As a result, the bandwidths of resonance spectra can be adjusted. The theory of such tapered structures will be investigated by the tapered transmission line and will be solved with the transfer matrix method. This method shows a better performance and higher transmission efficiency in comparison with the basic structures. On the other hand, the final filter has been chosen as the best one because of its hexagonal resonator. The main reason for having a better result is due to a longer interaction length in comparison with the circular resonator. This in turn creates much better energy coupling and results in higher transmission.
Keywords:plasmonics  surface plasmon polariton (SPP)  optical filter  metal–insulator–metal (MIM) waveguide  Drude model  
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《理论物理通讯》浏览原始摘要信息
点击此处可从《理论物理通讯》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号