首页 | 本学科首页   官方微博 | 高级检索  
     


One-dimensional quantum walks with a position-dependent coin
Authors:Rashid Ahmad  Uzma Sajjad  Muhammad Sajid
Affiliation:Department of Physics, Kohat University of Science and Technology, Kohat 26000, Khyber-Pakhtunkhwa, Pakistan
Abstract:We investigate the evolution of a discrete-time one-dimensional quantum walk driven by a position-dependent coin. The rotation angle, which depends upon the position of a quantum particle, parameterizes the coin operator. For different values of the rotation angle, we observe that such a coin leads to a variety of probability distributions, e.g. localized, periodic, classicallike, semi-classical-like, and quantum-like. Further, we study the Shannon entropy associated with position and the coin space of a quantum particle, and compare them with the case of the position-independent coin. Our results show that the entropy is smaller for most values of the rotation angle as compared to the case of the position-independent coin. We also study the effect of entanglement on the behavior of probability distribution and Shannon entropy by considering a quantum walk with two identical position-dependent entangled coins. We observe that in general, a wave function becomes more localized as compared to the case of the positionindependent coin and hence the corresponding Shannon entropy is lower. Our results show that a position-dependent coin can be used as a controlling tool of quantum walks.
Keywords:quantum walk  position-dependent coin  Shannon entropy  
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《理论物理通讯》浏览原始摘要信息
点击此处可从《理论物理通讯》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号