首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Controlling switching in bistable [2]catenanes by combining donor-acceptor and radical-radical interactions
Authors:Zhixue Zhu  Albert C Fahrenbach  Hao Li  Jonathan C Barnes  Zhichang Liu  Scott M Dyar  Huacheng Zhang  Juying Lei  Raanan Carmieli  Amy A Sarjeant  Charlotte L Stern  Michael R Wasielewski  J Fraser Stoddart
Institution:Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA.
Abstract:Two redox-active bistable 2]catenanes composed of macrocyclic polyethers of different sizes incorporating both electron-rich 1,5-dioxynaphthalene (DNP) and electron-deficient 4,4'-bipyridinium (BIPY(2+)) units, interlocked mechanically with the tetracationic cyclophane cyclobis(paraquat-p-phenylene) (CBPQT(4+)), were obtained by donor-acceptor template-directed syntheses in a threading-followed-by-cyclization protocol employing Cu(I)-catalyzed azide-alkyne 1,3-dipolar cycloadditions in the final mechanical-bond forming steps. These bistable 2]catenanes exemplify a design strategy for achieving redox-active switching between two translational isomers, which are driven (i) by donor-acceptor interactions between the CBPQT(4+) ring and DNP, or (ii) radical-radical interactions between CBPQT(2(?+)) and BIPY(?+), respectively. The switching processes, as well as the nature of the donor-acceptor interactions in the ground states and the radical-radical interactions in the reduced states, were investigated by single-crystal X-ray crystallography, dynamic (1)H NMR spectroscopy, cyclic voltammetry, UV/vis spectroelectrochemistry, and electron paramagnetic resonance (EPR) spectroscopy. The crystal structure of one of the 2]catenanes in its trisradical tricationic redox state provides direct evidence for the radical-radical interactions which drive the switching processes for these types of mechanically interlocked molecules (MIMs). Variable-temperature (1)H NMR spectroscopy reveals a degenerate rotational motion of the BIPY(2+) units in the CBPQT(4+) ring for both of the two 2]catenanes, that is governed by a free energy barrier of 14.4 kcal mol(-1) for the larger catenane and 17.0 kcal mol(-1) for the smaller one. Cyclic voltammetry provides evidence for the reversibility of the switching processes which occurs following a three-electron reduction of the three BIPY(2+) units to their radical cationic forms. UV/vis spectroscopy confirms that the processes driving the switching are (i) of the donor-acceptor type, by the observation of a 530 nm charge-transfer band in the ground state, and (ii) of the radical-radical ilk in the switched state as indicated by an intense visible absorption (ca. 530 nm) and near-infrared (ca. 1100 nm) bands. EPR spectroscopic data reveal that, in the switched state, the interacting BIPY(?+) radical cations are in a fast exchange regime. In general, the findings lay the foundations for future investigations where this radical-radical recognition motif is harnessed in bistable redox-active MIMs in order to achieve close to homogeneous populations of co-conformations in both the ground and switched states.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号