Abstract: | The effects of diluent on molecular motions and glass transition in the polystyrene–toluene system was studied by means of dielectric, thermal, and NMR measurements. Three dielectric relaxations were observed between 80 and 400°K. On the basis of NMR measurements on solutions in toluene and in deuterated toluene, relaxation processes were assigned to segmental motions of polystyrene, rotations of toluene, and the local motions of polystyrene and toluene in order of appearance from the high-temperature side. The concentration dependence of the relaxation strength and of the activation energy for the primary relaxation (that at the highest temperature) show a step increment at about 50% by weight. The activation plots for the primary process were expressed by the Vogel–Tamman equation. With this equation, the temperatures at which the mean dielectric relaxation time becomes 100 sec is determined. This agrees well with the glass-transition temperature Tg and hence Tg in concentrated solution is expressed by in terms of the parameters A, B, and T0 of the Vogel–Tamman equation. The values of A and B are, respectively, about 12 and 0.65 and independent of the concentration. The physical meaning of these parameters is discussed. |