首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Characterization of Zr-doped TiO2 nanocrystals prepared by a nonhydrolytic sol-gel method at high temperatures
Authors:Chang Sue-Min  Doong Ruey-An
Institution:Institute of Environmental Engineering, National Chiao Tung University, 75, Po Ai Street, Hsinchu, 30068, Taiwan. chang@mail.nctu.edu.tw
Abstract:Highly crystalline and surface-modified Zr-doped TiO(2) nanorods were successfully prepared using a nonhydrolytic sol-gel method that involves the condensation of metal halides with alkoxides in anhydrous trioctylphosphine oxide (TOPO) at either 320 or 400 degrees C. In addition, the interaction of the cross-condensation between the Ti and Zr species was studied by characterizing the morphologies, crystalline structures, chemical compositions, surface properties, and band gaps of the nanocrystals obtained at different reaction temperatures and Zr-to-Ti stoichiometric ratios. Increases in the concentration of Zr(4+) and in the reaction temperature led to large nanorods and regular shapes, respectively. In addition, only the anatase form was observed in the Zr-doped TiO(2) nanorods. The Zr-to-Ti ratios obtained ranged from 0.01 to 2.05, all of which were far below the stoichiometric ratios used during the preparation of the samples (0.25-4). Moreover, the Zr(4+) units accumulated mainly at the surface of the TiO(2) nanocrystals. The band gaps of the Zr-doped TiO(2) nanorods ranged from 2.8 to 3.8 eV, which are smaller than those of pure TiO(2) (3.7 eV) or ZrO(2) (5.2 eV). The Zr-doped anatase TiO(2) nanorods prepared at 400 degrees C at an initial stoichiometric Zr-to-Ti ratio of 2:3 exhibited the highest photoactivities for the decomposition of rhodamine B because of the presence of trace amounts of Zr(4+) (Zr/Ti = 0.03) in the TiO(2) and the regular shapes of these particles. DSC analysis indicated that the temperatures for forming nanocrystalline TiO(2) and ZrO(2) were 207 and 340 degrees C, respectively. Moreover, the reactivities of condensation between the Ti species were reduced when Zr species were involved in the NHSG reactions. The results obtained in this study clearly demonstrate that the faster kinetics for the generation of TiO(2) controls the material properties as well as the photoactivities of the nonhydrolytic sol-gel-derived nanocrystals.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号