首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Harnessing Radicals in Confined Supramolecular Environments Made Possible by MOFs
Authors:Mochen Li  Prof Tiexin Zhang  Dr Yusheng Shi  Prof Chunying Duan
Institution:State Key Laboratory of Fine Chemicals, School of Chemical Engineering, School of Chemistry, Dalian University of Technology, Dalian, 116024 P. R. China
Abstract:Researching and utilizing radical intermediates in organic synthetic chemistry have innovated discoveries in methodology and theory. Reactions concerning free radical species opened new pathways beyond the frame of the two-electron mechanism while commonly characterized as rampant processes lacking selectivity. As a result, research in this field has always focused on the controllable generation of radical species and determining factors of selectivity. Metal-organic frameworks (MOFs) have emerged as compelling candidates as catalysts in radical chemistry. From a catalytic point of view, the porous nature of MOFs entails an inner phase for the reaction that could offer possibilities for the regulation of reactivity and selectivity. From a material science perspecti ve, MOFs are organic-inorganic hybrid materials that integrate functional units in organic compounds and complex forms in the tunable long-ranged periodic structure. In this account, we summarized our progress in the application of MOFs in radical chemistry in three parts: (1) The generation of radical species; (2) The weak interactions and site selectivity; (3) Regio- and stereo-selectivity. The unique role of MOFs play in these paradigms is demonstrated in a supramolecular narrative through the analyses of the multi-constituent collaboration within the MOF and the interactions between MOFs and the intermediates during the reactions.
Keywords:MOFs  Catalysis  Radical chemistry
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号