首页 | 本学科首页   官方微博 | 高级检索  
     


Effect of dipolar interaction on the magnetization state of chains of rectangular particles located either head-to-tail or side-by-side
Authors:D. Bisero  P. Cremon  M. Madami  M. Sepioni  S. Tacchi  G. Gubbiotti  G. Carlotti  A. O. Adeyeye  N. Singh  S. Goolaup
Affiliation:1.Dipartimento di Fisica, CNISM,Università di Ferrara,Ferrara,Italy;2.Dipartimento di Fisica, CNISM,Università di Perugia,Perugia,Italy;3.IOM-CNR, Dipartimento di Fisica,Università di Perugia,Perugia,Italy;4.Department of Electrical and Computer Engineering,National University of Singapore,Singapore,Singapore
Abstract:Magnetostatic coupling in arrays of closely spaced magnetic elements is becoming an important issue in the path to the fabrication of spintronic devices. Dense chains of rounded-corners rectangular particles (dots) of lateral size 1025 × 450 nm2, with interdot spacing variable in the range between 55 and 700 nm, have been patterned by deep UV lithography, followed by the lift-off of two permalloy films of thickness 20 and 40 nm. Magneto-optical Kerr effect (MOKE) and magnetic force microscopy (MFM) experiments, together with micromagnetic simulations, were performed to study the dependence of the magnetization configuration on the dipolar coupling. Both MOKE measurements and MFM images clearly show that, at remanence, the magnetic state of isolated particles of thickness 20 nm takes the form of a distorted single domain (C-state or S-State configurations). Instead, when the particle thickness is double (40 nm), closure states characterized by one, two or three vortices occur at remanence. However, when the 40 nm thick dots are placed in chains along the easy axis (head to tail), as the separation is progressively reduced, the single domain state is stabilized at remanence. On the other hand, when the 40 nm thick particles are placed side by side in chains the effect of dipolar interactions is to favour the nucleation of vortex states. For small inter-element separation, there is only one vortex per particle and it has the same chirality in adjacent particles, due to the dipolar interaction. Different from this, for the 20 nm thick samples and sub-100 nm separation, adjacent particles are single-domain but with antiparallel magnetization in neighbour elements, like in an artificial antiferromagnet.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号