首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Spatial electron distribution and its origin in the nanoporous TiO2 network of a dye solar cell
Authors:Würfel U  Wagner J  Hinsch A
Institution:Freiburg Material Research Center, University of Freiburg, Stefan-Meier-Strasse 21, Freiburg 79104, Germany.
Abstract:Dye solar cells have been investigated by charge carrier extraction under short and open circuit conditions and an illumination intensity equivalent to 1 sun (AM 1.5). Under short circuit conditions, a surprisingly high amount of charge carriers stored in the nanoporous TiO2 network has been observed. A theoretical model was developed to describe the charge transport in the nanoporous TiO2 network of a dye solar cell, and the spatial distribution of the electron concentration was calculated. These results were compared with the experimental data of charge carriers stored in the TiO2 network under short and open circuit conditions. We were able to conclude that under short circuit conditions, the electrochemical potential of the electrons in the region far from the electrode is up to 550-570 meV higher than that of the electrons at the front electrode. This internal voltage is the driving force across the nanoporous TiO2 film under short circuit conditions.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号