首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Understanding multi-stage HCCI combustion caused by thermal stratification and chemical three-stage auto-ignition
Authors:Moez Ben Houidi  Abdullah S AlRamadan  Julien Sotton  Marc Bellenoue  S Mani Sarathy  Bengt Johansson
Institution:1. King Abdullah University of Science and Technology (KAUST), CCRC, PSE, Thuwal 23955-6900, Saudi Arabia;2. ISAE-ENSMA, Institut PPRIME, departement Fluide Thermique Combustion, BP 40109, Teleport2, 1 avenue Clement Ader, F86961 Futuroscope Chasseneuil-du-Poitou Cedex, France
Abstract:The Homogeneous Charge Compression Ignition (HCCI) concept shows great potential for improving engine efficiency and reducing pollutant emissions. However, the operation with this concept in Internal Combustion (IC) engines is still limited to low speed and load conditions, as excessive Pressure Rise Rates (PRR) are generated with its fast auto-ignition. To overcome this limitation, the use of moderate thermal and charge stratification has been promoted. This leads to multi-stage ignition, and thus a potentially acceptable PRR. Recently Sarathy et al. (2019), three-stage auto-ignition has been emphasized as a chemical phenomenon where the thermal runaway is inhibited during the main ignition event. The current paper demonstrates experimental evidence on this phenomenon observed during n-heptane and n-hexane auto-ignition at lean diluted conditions in a flat piston Rapid Compression Machine (RCM). Multi-stage ignition events caused by either chemical kinetics or by the well-known thermal stratification of this type of RCM are clearly identified and differentiated. The combination of these two factors seems to be a suitable solution to overcome PRR limitations.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号