首页 | 本学科首页   官方微博 | 高级检索  
     


Transformation of nitrogen during hydrothermal carbonization of sewage sludge: Effects of temperature and Na/Ca acetates addition
Authors:Jingchun Huang  Zhenqi Wang  Yu Qiao  Bo Wang  Yun Yu  Minghou Xu
Affiliation:1. State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074, China;2. Discipline of Chemical Engineering, Western Australian School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
Abstract:This study reports the effects of temperature and Ca/Na acetates addition on the transformation of nitrogen during hydrothermal carbonization of sewage sludge at 160–250 °C. The nitrogen species in the hydrochar, aqueous, oil and gas products from sludge hydrothermal carbonization at different temperatures are well characterized, with a focus on the amino acid species in various products. Temperature is found to greatly affect the nitrogen transformation during sludge hydrothermal carbonization. At 160 °C, 47.3% of nitrogen is transformed into the aqueous product. When the temperature increases to 250 °C, only 27.1% of nitrogen is retained in the hydrochar, while 69.2 and 6.7% of nitrogen is present in the aqueous and oil products, respectively. During hydrothermal carbonization, the protein-N is first converted into the polypeptide-N in the aqueous product, followed by its further decomposition into the NH+ 4-N. This leads to a high content of the NH+ 4-N in the aqueous product, especially at increased temperatures. The labile protein-N is also transformed into the heterocylic-N (especially the pyrrole-N) in the hydrochar as the temperature increases. Among all nitrogen species in the aqueous product, the polypeptide-N consisting of amino acids with the alkyl group is the most stable. Moreover, the addition of NaAc and CaAc2 reduces the nitrogen retention in the hydrochar, mainly due to enhanced hydrolysis of the protein-N. While for CaAc2 addition, the deamination of the polypeptide-N is also enhanced, leading to a higher NH+ 4-N in the aqueous product. Our results show that the type of amino acid in protein is important to determine the nitrogen transformation pathways, and acetate addition is an important strategy for enhancing nitrogen removal in the hydrochar during hydrothermal carbonization.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号