首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Measurement of time histories of stable intermediates during first stage ignition of n-heptane and its two isomers in a shock tube
Authors:Rishav Choudhary  Julian J Girard  Sean Clees  Sarah E Johnson  Jiankun Shao  David F Davidson  Ronald K Hanson  Allen A Aradi
Institution:1. Department of Mechanical Engineering, Stanford University, 418 Panama Mall, Room 104, Stanford, CA 94305, USA;2. Shell Projects and Technology Development, Houston, TX 77082, USA
Abstract:We report the first shock tube measurements of formaldehyde (CH2O) during the first stage ignition of n-heptane, 2-methylhexane and 3,3-dimethylpentane, in highly diluted fuel/oxygen mixtures in the pressure range of 7–10 atm and temperature range of 700–880 K. Combined time histories of all carbonyl (–C = O) species, CO and fuel were also measured simultaneously in an effort to study the impact of fuel structure on the concentration and the rate of evolution of first stage ignition products. Of the three isomers studied in this work, n-heptane was found to be the fastest, while 3,3-dimethylpentane was found to be the slowest. The differences in the time scale of formation, and plateau concentration of the intermediates between the isomers across the entire range of test conditions suggests a strong dependency of the measured time histories to fuel structure. These species therefore act as markers of the Negative Temperature Coefficient (NTC) behavior of fuels and can be used as targets for developing semi-empirical, hybrid chemistry models of complex, multi-component petroleum derived gasoline and jet fuels. The time histories reported in this work should prove very useful in the refinement of detailed kinetic models of n-heptane, and development of rate rules for branched alkane isomers.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号