首页 | 本学科首页   官方微博 | 高级检索  
     


Flame acceleration and DDT in large-scale obstructed channels filled with methane-air mixtures
Authors:Vadim N. Gamezo  Christian L. Bachman  Elaine S. Oran
Affiliation:1. Naval Research Laboratory, Washington, DC 20375, USA;2. University of Maryland, College Park, Maryland 20742, USA;3. Texas A&M University, College Station, TX 77843, USA
Abstract:We study the evolution of premixed methane-air flames in large-scale obstructed channels using reactive CFD simulations. We vary the channel height d, the blockage ratio br, and the scaled distance between obstacles L/d to study their effects on the distance to DDT, LDDT, and the distance to the shock-flame complex, LSF. The results of simulations show two main effects. On one hand, the increase of br and decrease of L/d promote the flame acceleration and reduce LSF and LDDT. On the other hand, some configurations with higher br and smaller L/d prevent the detonation development. As a result, the leading shock and the flame never merge, and continue to propagate as a quasi-steady-state shock-flame complex. A collision of this complex with solid structures generates high pressures and strong reflected shocks that can ignite a detonation. This detonation would propagate in a shock-compressed material and result in extremely high pressures exceeding pressures of a regular detonation. Thus, the distance LSF at which the shock-flame complex forms provides an important measure of a destructive potential in addition to LDDT. This is particularly relevant for channels with high br where LSF can be significantly shorter than LDDT.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号