首页 | 本学科首页   官方微博 | 高级检索  
     


Nonlinear mapping and distance geometry
Authors:Franc  Alain  Blanchard  Pierre  Coulaud  Olivier
Affiliation:1.BioGeCo, INRA, Univ. Bordeaux, Cestas, France
;2.HiePACS, Inria Bordeaux - Sud-Ouest, 200, rue Vieille Tour, 33405, Talence CEDEX, France
;3.Pleiade, Inria Bordeaux- Sud-Ouest, 200, rue Vieille Tour, 33405, Talence CEDEX, France
;
Abstract:

Distance Geometry Problem (DGP) and Nonlinear Mapping (NLM) are two well established questions: DGP is about finding a Euclidean realization of an incomplete set of distances in a Euclidean space, whereas Nonlinear Mapping is a weighted Least Square Scaling (LSS) method. We show how all these methods (LSS, NLM, DGP) can be assembled in a common framework, being each identified as an instance of an optimization problem with a choice of a weight matrix. We study the continuity between the solutions (which are point clouds) when the weight matrix varies, and the compactness of the set of solutions (after centering). We finally study a numerical example, showing that solving the optimization problem is far from being simple and that the numerical solution for a given procedure may be trapped in a local minimum.

Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号