首页 | 本学科首页   官方微博 | 高级检索  
     


Particle temperature and potassium release during combustion of single pulverized biomass char particles
Authors:Wubin Weng  Shen Li  Mário Costa  Zhongshan Li
Affiliation:1. Division of Combustion Physics, Lund University, Post Office Box 118, SE-221 00 Lund, Sweden;2. IDMEC, Mechanical Engineering Department, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
Abstract:This work investigated the combustion characteristics of single pulverized biomass-derived char particles. The char particles, in the size range 224–250 µm, were prepared in a drop tube furnace at pyrolysis temperatures of 1273 or 1473 K from four types of biomass particles – wheat straw, grape pomace, kiwi branches and rice husk. Subsequently, the char particles were injected upward into a confined region of hot combustion products produced by flat flames stabilized on a McKenna burner, with mean temperatures of 1460, 1580 and 1670 K and mean O2 concentrations of 4.5, 6.5 and 8.5 vol%. The data reported include particle temperature, obtained using a two-color pyrometry technique, and potassium release rate, measured using a laser-induced photofragmentation fluorescence imaging technique. In addition, particle ignition delay time and burning time, obtained from the temporal evolution of the thermal radiation intensity of the burning char particles, are also reported. The results indicated that ignition of the char particles occurs simultaneously with the starting of the potassium release, then the particle burning intensity increases rapidly until it reaches a maximum, after which both the particle temperature and the potassium release rate remain approximately constant until the end of the char oxidation process. The char ignition process is temperature controlled, and the char oxidation process is oxygen diffusion controlled, with the total potassium release being independent of the oxygen concentration and the temperature of the combustion products. The combustion behavior of the chars studied is more affected by the char type than by the conditions used to prepare them.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号