首页 | 本学科首页   官方微博 | 高级检索  
     


Minimum ignition energy and propagation dynamics of laminar premixed cool flames
Authors:Qi Yang  Peng Zhao
Affiliation:Department of Mechanical Engineering, Oakland University, 330 Engineering Center, 115 Library Drive, Rochester, MI 48309, USA
Abstract:Laminar premixed cool flames, induced by the coupling of low-temperature chemistry and convective-diffusive transport process, have recently attracted extensive interest in combustion and engine research. In this work, numerical simulations have been conducted using a recently developed open-source reacting flow platform reactingFOAM-SCT, to investigate the minimum ignition energy (MIE) and propagation dynamics of premixed cool flames in a 1D spherical coordinate. Results have shown that when ignition energy is below the MIE of regular hot flames, a class of cool flames could be initiated, which allow much wider flammability limits, both lean and rich, compared to hot flames. Furthermore, the overall cool flame propagation dynamics exhibit intrinsic similarity to those of hot flames, in that, they begin with an ignition kernel propagation regime, followed by two transition regimes, and eventually reach a normal flame propagation regime. However, a spherical expanding cool flame responds completely differently to stretch. Specifically, a regular outwardly propagating hot spherical flame accelerates with increasing stretch rate when the mixture Le < 1 and decelerates when Le > 1. However, it is found that a cool flame always tends to decelerate with increasing stretch rate regardless of mixture composition, exhibiting unique flame aerodynamic characteristic. This research discovers novel features of premixed cool flame initiation and propagation dynamics and sheds light on flame transition, spark-ignition system design, and advanced engine combustion control.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号