首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Classical differential cross sections and rotational energy transfer distributions for realistic ion—molecule potentials in the CPST limit
Authors:Frank E Budenholzer  Ching-Ching Lee
Institution:Department of Chemistry, Fu Jen Catholic University, Taipei, Taiwan, ROC
Abstract:Classical differential cross sections, rotational energy transfer distributions at specified scattering angles and the first moments of the rotational energy transfer distributions are calculated for two ion—molecule systems: K+ ?CSCl and Li+ ?CO. The deflection angles and change in angular momentum are calculated using classical perturbation scattering theory (CPST). Monte Carlo techniques are then used to calculate the orientation averaged total differential cross sections and the rotational energy transfer distributions. Results are compared with experiment and agreement is found to be satisfactory. These two systems represent two extremes in anisotropy. For Li+ ?CO a strong classical rainbow peak is still seen in the differential cross section, while in the K+ ?CSCl system the rainbow is complete quenched. In the rotational energy transfer distributions of both systems, rotational rainbow peaks are clearly observed. The calculations also predict a leveling off of the first moment of the rotational energy transfer distribution at high angles, corresponding to the transition to repulsive scattering. On the basis of these results some comments are made on the nature of classical rainbow scattering for anisotropic systems.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号