首页 | 本学科首页   官方微博 | 高级检索  
     


Theoretical and numerical calculations for the time-averaged acoustic force and torque acting on a rigid cylinder of arbitrary size in a low viscosity fluid
Authors:Wang Jingtao  Dual Jurg
Affiliation:Institute of Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland. wang@imes.mavt.ethz.ch
Abstract:In this paper, theoretical calculations as well as numerical simulations are performed for the time-averaged acoustic force and torque on a rigid cylinder of arbitrary size in a fluid with low viscosity, i.e., the acoustic boundary layer is thin compared to the cylinder radius. An exact analytical solution and its approximation are proposed in the form of an infinite series including Bessel functions. These solutions can be evaluated easily by a mathematical software package such as mathematica and matlab. Three types of incident waves, plane traveling wave, plane standing wave, and dual orthogonal standing waves, are investigated in detail. It is found that for a small particle, the viscous effects for an incident standing wave may be neglected but those for an incident traveling wave are notable. A nonzero viscous torque is experienced by the rigid cylinder when subjected to dual orthogonal standing waves with a phase shift even when the cylinder is located at equilibrium positions without imposed acoustic forces. Furthermore, numerical simulations are carried out based on the FVM algorithm to verify the proposed theoretical formulas. The theoretical results and the numerical ones agree with each other very well in all the cases considered.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号