首页 | 本学科首页   官方微博 | 高级检索  
     检索      


RIMS analysis of ion induced fragmentation of molecules sputtered from an enriched U3O8 matrix
Authors:David Willingham  Michael R Savina  Kim B Knight  Michael J Pellin  Ian D Hutcheon
Institution:1. Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL, 60439, USA
2. Lawrence Livermore National Laboratory, P. O. Box 808, Livermore, CA, 94551, USA
Abstract:Resonance ionization mass spectrometry was used to measure the composition of the sputtered flux from 15 keV Ga+, Au+, Au2 + and Au3 + primary ions impacting a 235U enriched U3O8 standard. We demonstrate that molecular fragmentation decreases as the primary ion mass and nuclearity increases. Stopping and range of ions in matter calculations show that cluster ions (Au2 + and Au3 +) deposit more of their energy via direct knock-ons with near-surface target atoms, whereas monatomic ions (Ga+ and Au+) penetrate much deeper into the target sub-surface region. We correlate these results to the experimental observations by showing that increased cluster ion sputter yields partition the projectile energy over a larger number of sputtered molecules. Therefore, while cluster ions deposit more total energy into the near surface region of the target compared to monatomic ions, the energy per molecule decreases with projectile mass and nuclearity. Less energy per molecule decreases the number of U–O bond breaks and, consequently, leads to a decrease in molecular fragmentation. Additionally, the extent of molecular fragmentation as a function of ion dose was evaluated. We show that molecular fragmentation increases with increased ion dose; primarily as a result of sub-surface chemical damage accumulation. The relative intensity of this effect appears to be projectile independent.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号