首页 | 本学科首页   官方微博 | 高级检索  
     


Towards a reliable molecular mass determination of intact glycoproteins by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry
Authors:Giménez Estela  Benavente Fernando  Barbosa José  Sanz-Nebot Victoria
Affiliation:Departament de Química Analítica, Universitat de Barcelona, Diagonal 647, 08028 Barcelona, Spain.
Abstract:Different matrices and sample-matrix preparation procedures have been tested in order to study their influence on the matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectra of intact glycoproteins, which present different degrees of glycosylation (human transferrin; bovine fetuin; bovine alpha(1)-acid-glycoprotein; recombinant human erythropoietin; and the novel erythropoiesis stimulating protein). Using sinapinic acid (SA) and the fast evaporation method, the studied glycoproteins became susceptible to fragmentation at any laser intensity, suggesting that this 'hot' matrix is unsuitable for a reliable molecular mass determination of glycosylated compounds. In contrast, 2,5-dihydroxybenzoic acid (DHB) and 6-aza-2-thiothymine (ATT), with an adequate sample-matrix preparation, provided improved results. Samples containing DHB after crystallization by vacuum drying demonstrated the best performance because the labile functional groups from the glycoforms were apparently fragmented to a lower extent. The average molecular masses obtained using this methodology were in all cases a better estimation than those values reported in the literature. The results were reproducible, and sensitivity was similar to that obtained with SA and the fast evaporation method. These excellent results suggest that this MALDI-TOF-MS methodology could be useful for an improved determination of the average molecular mass values of microheterogeneous compounds such as glycoproteins, glycosylated compounds or, in general, molecular mass values of molecules with similar labile functional groups.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号