首页 | 本学科首页   官方微博 | 高级检索  
     


An ultrasensitive fluorescence sensor for determination of trace levels of copper in blood samples
Authors:Vojoudi  Hossein  Bastan  Bahareh  Ghasemi  Jahan B.  Badiei  Alireza
Affiliation:1.School of Chemistry, College of Science, University of Tehran, Tehran, 14174, Iran
;2.Department of Chemistry, Faculty of Science, Central Tehran Branch, Islamic Azad University, Shahrak Gharb, Tehran, 13185, Iran
;
Abstract:

A novel SBA-15-based fluorescent sensor, SBA-PI: mesoporous SBA-15 structure modified with iminostilbene groups, was designed, synthesized, and characterized by Fourier transform-infrared spectroscopy (FT-IR), ultraviolet–visible spectroscopy, field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS), thermogravimetric analysis (TGA), low-angle X-ray diffraction techniques (low-angle XRD), and N2 adsorption–desorption techniques. The SBA-PI as a sensor with a selective behavior for detection of Cu2+ comprises iminostilbene carbonyl as the fluorophore group. The SBA-PI sensor displays an excellent fluorescence response in aqueous solutions and the fluorescence intensity quenches remarkably upon addition of Cu2+. Other common interfering ions even at high concentration ratio showed either no or very small changes in the fluorescence intensity of SBA-PI in the absence of Cu2+. A limit of detection of 8.7 × 10−9 M for Cu2+ indicated that this fluorescence sensor has a high sensitivity and selectivity toward the target copper (II) ion. The fabricated Cu2+ sensor was successfully applied for the determination of the Cu2+ in human blood samples without any significant interference. With the selective analysis of Cu2+ ions down to 0.9 nM in blood, the sensor is a promising and a novel detection candidate for Cu2+ and can be applied in the clinical laboratory. A reversibility and accuracy in the fluorescence behavior of the sensor was found in the presence of I¯ that was described as a masking agent for Cu2+.

 loading=

Graphical abstract

Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号