首页 | 本学科首页   官方微博 | 高级检索  
     


Dynamic analysis of a rigid-flexible inflatable space structure coupled with control moment gyroscopes
Authors:Sun  Jialiang  Cai  Zhengzheng  Sun  Jiahao  Jin  Dongping
Affiliation:1.State Key Laboratory of Mechanics and Control of Mechanical Structures, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
;
Abstract:

The vibration generated by the inflatable structure after deployment has a great impact on the performance of the payloads. In this paper, the influence of the control moment gyroscopes (CMGs) on the dynamic responses and characteristics of an inflatable space structure is studied, based on the flexible multibody dynamics in a combination of the absolute nodal coordinate formulation (ANCF) and the natural coordinate formulation (NCF). Firstly, the ANCF and NCF are used to accurately describe the large deformations and large overall motions of flexible inflatable tubes and rigid satellites, respectively. Then, instead of modeling gyroscopic flexible bodies, this paper pioneers a rigid body dynamic model of the CMG in detail by using the NCF modeling scheme, which can be attached to and coupled with any flexible bodies without any assumptions. Then, the orbital dynamic equations of the inflatable space structure coupled with distributed CMGs are obtained by considering the effects of Coriolis force, centrifugal force, and gravity gradient through coordinate transformation. The dynamic characteristics of the inflatable space structure are also analyzed by deriving the eigenvalue problem of a flexible multibody system. Finally, the accuracy of the CMG dynamic model is verified via a classic heavy top example. Several numerical examples are presented to study the influence of the magnitudes and directions of the rotor angular momentum of the CMGs on the dynamic responses and characteristics of the inflatable space structure.

Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号