首页 | 本学科首页   官方微博 | 高级检索  
     检索      


FTIR studies on the gas phase laser-induced decomposition of CF3CH2ONO
Authors:Li Shuping  Tsz Sian Chwee  Wai Yip Fan  
Institution:

Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore

Abstract:The unimolecular decomposition of CF3CH2O (2,2,2-trifluoroethoxy) radical generated from 355 nm pulsed nanosecond laser photolysis of CF3CH2ONO (2,2,2-trifluoroethylnitrite) in the gas phase has been studied using Fourier transform infrared absorption spectroscopy. The radical preferentially dissociates via its C–H bond cleavage to yield CF3CHO (trifluoroacetaldehyde) as the major product. The infrared spectrum of formaldehyde, one of the products of C–C bond dissociation of CF3CH2O was not observed under a range of nitrite and argon buffer gas pressures. Similar results were obtained when thermal heating and broadband xenon lamp irradiation of the nitrite were carried out. The addition of high pressures of NO further decreased the production of CF3CHO since recombination of NO with the trifluoroethoxy radical competes with the unimolecular dissociation process. Surprisingly, CF3CDO was also the only product observed when the deuterated species CF3CD2ONO was photolysed by the 355 nm laser. These observations contradicted MP2/aug-cc-pVTZ calculations which were found to favour the C–C bond dissociation channel. However, 355 nm photolysis of CF3CH2ONO in the presence of O2 yielded trifluoroethylnitrate, CF3CH2ONO2 as the main product while CF3CHO and CF2O were also observable at much lower yields.
Keywords:Trifluoroalkoxy radicals  Pulsed laser photolysis-FTIR spectroscopy  Atmospheric chemistry
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号