首页 | 本学科首页   官方微博 | 高级检索  
     


Synthesis of poly(methyl methacrylate) core/chitosan-mixed-polyethyleneimine shell nanoparticles and their antibacterial property
Affiliation:1. School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China;2. School of Material Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China;3. Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Xiangtan 411201, China;4. Hunan Province College Key Laboratory of QSAR/QSPR, Xiangtan 411201, China;5. Hunan Province Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, Xiangtan 411201, China
Abstract:The core–shell nanoparticles possessing poly(methyl methacrylate) (PMMA) core coated with chitosan (CS), polyethyleneimine (PEI), and chitosan-mixed-polyethyleneimine (CS/PEI) shells were synthesized in this work. The emulsifier-free emulsion polymerization triggered by a redox initiating system from t-butylhydroperoxide (TBHP) and amine groups on CS and/or PEI was used as a synthetic method. In the CS/PEI systems, the amount of CS was kept constant (0.5 g), while the amount of PEI was varied from 0.1 to 0.5 g. The surface and physico-chemical properties of prepared nanoparticles were then examined. FTIR spectra indicated the presence of grafted PMMA on CS and/or PEI, and the weight fraction of incorporated PEI in the CS/PEI nanoparticles. All nanoparticles were spherical in shape with uniform size distribution illustrated by scanning electron microscopy (SEM). The introduction of PEI to CS nanoparticles yielded the higher monomer conversion, grafting efficiency, and grafting percentage compared with the CS nanoparticles. The size of CS/PEI nanoparticles was smaller than the original CS and PEI nanoparticles, and tended to decrease with increasing amount of PEI introduced. The introduction of PEI also brought the higher colloidal stability to the nanoparticles as indicated by zeta-potential measurement and isoelectric point analysis. The nanoparticles exhibited a promising antibacterial activity against Staphylococcus aureus and Escherichia coli. The nanoparticle–bacteria interaction was studied via SEM. The results suggested that they would be useful as effective antibacterial agents.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号