首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Spectroelectrochemical Study of N‐Substituted Phenoxazines as Electrochemical Labels of Biomolecules
Abstract:The electrochemical conversion of N‐substituted phenoxazines (NSP's) bearing a CH2CH2? X substitute (where X?OH, COOH, CH2NH2, CH2SO3H, CH2NHCOR) was investigated using cyclic voltammetry on a bulk gold electrode and a thin‐layer spectroelectrochemical cell. The electrochemical oxidation of NSP's on the gold electrode was quasi‐reversible and proceeded in a diffusion‐controlled regime. The formal redox potential of NSP's covered the range from 0.39 to 0.45 V vs. SCE. The electrochemical oxidation of NSP's in the thin‐layer spectroelectrochemical cell produced radical cations that showed absorbance at 385, 410 and 530 nm. Electrochemical conversion fitted the general voltammetric current‐potential equation of a reversible wave, whereas electrolysis at constant potential showed a typical Cottrell behavior. Combining of NSP's with a biologically‐relevant theophylline molecule did not change electrochemical and spectral properties of the phenoxazine core. Theophylline enlarged with NSP's demonstrated electrochemical and biocatalytic behavior similar to that of NSP's. The investigated NSP's possess electrochemical and spectral properties that are useful as biomolecular labels for electroanalysis.
Keywords:Phenoxazine  Cyclic voltammetry  Spectroelectrochemistry  Laccase
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号