首页 | 本学科首页   官方微博 | 高级检索  
     


Stabilized Lipid Membrane Based Biosensors with Incorporated Enzyme for Repetitive Uses
Abstract:This work reports a technique for the stabilization of lipid membrane based biosensors with incorporated enzyme that retains its activity for repetitive uses. Microporous filters composed of glass fibers were used as supports for the stabilization of these sensors. The lipid film is formed on the filter by polymerization using UV (ultraviolet) radiation prior its use. Methacrylic acid was the functional monomer, ethylene glycol dimethacrylate was the crosslinker and 2,2′‐azobis‐(2‐methylpropionitrile) was the initiator. The enzyme (acetylcholinesterase) is incorporated within this mixture prior to polymerization. The polymerization process takes place by using UV irradiation instead of heating at 60 °C the lipid mixture because this temperature might denature the enzyme. This method for preparation of stabilized lipid membranes was investigated using Raman spectroscopy. The results have indicated that the kinetics of polymerization are completed within 4 hours. The retain in activity of the enzyme was studied using electrochemical experiments which have shown that this mild technique of polymerization can now be used to incorporate a protein in these lipid membranes without loss of their activity. This will allow the practical use of the techniques for chemical sensing based on lipid membranes based biosensors and commercialization of these devices.
Keywords:Biosensors  Lipid membranes  Polymerization  Stabilization  UV irradiation  Acetylcholinesterase
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号