首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Finite element solution to passive scalar transport behind line sources under neutral and unstable stratification
Authors:Chun‐Ho Liu  Dennis Y C Leung
Abstract:This study employed a direct numerical simulation (DNS) technique to contrast the plume behaviours and mixing of passive scalar emitted from line sources (aligned with the spanwise direction) in neutrally and unstably stratified open‐channel flows. The DNS model was developed using the Galerkin finite element method (FEM) employing trilinear brick elements with equal‐order interpolating polynomials that solved the momentum and continuity equations, together with conservation of energy and mass equations in incompressible flow. The second‐order accurate fractional‐step method was used to handle the implicit velocity–pressure coupling in incompressible flow. It also segregated the solution to the advection and diffusion terms, which were then integrated in time, respectively, by the explicit third‐order accurate Runge–Kutta method and the implicit second‐order accurate Crank–Nicolson method. The buoyancy term under unstable stratification was integrated in time explicitly by the first‐order accurate Euler method. The DNS FEM model calculated the scalar‐plume development and the mean plume path. In particular, it calculated the plume meandering in the wall‐normal direction under unstable stratification that agreed well with the laboratory and field measurements, as well as previous modelling results available in literature. Copyright © 2005 John Wiley & Sons, Ltd.
Keywords:fluid turbulence  direct numerical simulation (DNS)  finite element method (FEM)  open‐channel flow  passive scalar plume
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号