首页 | 本学科首页   官方微博 | 高级检索  
     


Evolution of the structure and chemical state of Pd nanoparticles during the in situ catalytic reduction of NO with H2
Authors:Paredis Kristof  Ono Luis K  Behafarid Farzad  Zhang Zhongfan  Yang Judith C  Frenkel Anatoly I  Cuenya Beatriz Roldan
Affiliation:Department of Physics, University of Central Florida, Orlando, Florida 32816, United States.
Abstract:An in-depth understanding of the fundamental structure of catalysts during operation is indispensable for tailoring future efficient and selective catalysts. We report the evolution of the structure and oxidation state of ZrO(2)-supported Pd nanocatalysts (~5 nm) during the in situ reduction of NO with H(2) using X-ray absorption fine-structure spectroscopy and X-ray photoelectron spectroscopy. Prior to the onset of the reaction (≤120 °C), a NO-induced redispersion of our initial metallic Pd nanoparticles over the ZrO(2) support was observed, and Pd(δ+) species were detected. This process parallels the high production of N(2)O observed at the onset of the reaction (>120 °C), while at higher temperatures (≥150 °C) the selectivity shifts mainly toward N(2) (~80%). Concomitant with the onset of N(2) production, the Pd atoms aggregate again into large (6.5 nm) metallic Pd nanoparticles, which were found to constitute the active phase for the H(2)-reduction of NO. Throughout the entire reaction cycle, the formation and stabilization of PdO(x) was not detected. Our results highlight the importance of in situ reactivity studies to unravel the microscopic processes governing catalytic reactivity.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号