首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Solvent effects on the nπ* transition of pyrimidine in aqueous solution
Authors:Jiali Gao  Kyoungrim Byun
Institution:(1) Department of Chemistry, State University of New York, Buffalo, NY 14260, USA, US
Abstract:A hybrid quantum mechanical and molecular mechanical potential is used in Monte Carlo simulations to examine the solvent effects on the electronic excitation energy for the n→π* transition of pyrimidine in aqueous solution. In the present study, the pyrimidine molecule is described by the semi-empirical AM1 model, while the solvent molecules are treated classically. Two sets of calculations are performed: the first involves the use of the pairwise three-point charge TIP3P model for water, and the second computation employs a polarizable many-body potential for the solvent. The latter calculation takes into account the effect of solvent polarization following the solute electronic excitation, and makes a correction to the energies determined using pairwise potentials, which neglects such fast polarization effects and overestimates the solute-solvent interactions on the Franck-Condon excited states. Our simulation studies of pyrimidine in water indicate that the solvent charge redistribution following the solute electronic excitation makes modest corrections (about −130␣cm−1) to the energy predicted by using pairwise potentials. Specific hydrogen bonding interactions between pyrimidine and water are important for the prediction of solvatochromic shifts for pyrimidine. The computed n→π* blue shift is 2275±110 cm−1, which may be compared with the experimental value (2700 cm−1) from isooctane to water. Received: 14 January 1997 / Accepted: 21 February 1997
Keywords:: Solvent effect  Pyrimidine  Hybrid quantum mechanical and molecular mechanical potential
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号