首页 | 本学科首页   官方微博 | 高级检索  
     


Development of a charge-perturbed particle-in-a-sphere model for nanoparticle electronic structure
Authors:Guidez Emilie B  Aikens Christine M
Affiliation:Department of Chemistry, Kansas State University, 213 CBC Building, Manhattan, KS 66506, USA.
Abstract:The complex surface structure of gold-thiolate nanoparticles is known to affect the calculated density functional theory (DFT) excitation spectra. However, as the nanoparticle size increases, it becomes impractical to calculate the excitation spectrum using DFT. In this study, a new method is developed to determine the energy levels of the thiolate-protected gold nanoparticles [Au(25)(SR)(18)](-), Au(102)(SR)(44) and Au(144)(SR)(60). A 3 nm thiolate-protected nanoparticle is also modeled. The particle-in-a-sphere model is used to represent the core while the ligands are treated as point charge perturbations. The electronic structures obtained with this model are qualitatively similar to DFT results. The symmetry of the arrangement of the perturbations around the core plays a major role in determining the splitting of the orbitals. The radius chosen to represent the core also affects the orbital splitting. Increasing the number of perturbations around the core shifts the orbitals to higher energies but does not significantly change the band gaps and orbital splitting as long as the symmetrical arrangement of the perturbations is conserved. This model can be applied to any gold nanoparticle with a spherical core, regardless of its size or the nature of the ligands, at very low computational cost.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号