首页 | 本学科首页   官方微博 | 高级检索  
     检索      


In situ DNA oxidative damage by electrochemically generated hydroxyl free radicals on a boron-doped diamond electrode
Authors:Oliveira S Carlos B  Oliveira-Brett Ana Maria
Institution:Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade de Coimbra, Coimbra, Portugal.
Abstract:In situ DNA oxidative damage by electrochemically generated hydroxyl free radicals has been directly demonstrated on a boron-doped diamond electrode. The DNA-electrochemical biosensor incorporates immobilized double-stranded DNA (dsDNA) as molecular recognition element on the electrode surface, and measures in situ specific binding processes with dsDNA, as it is a complementary tool for the study of bimolecular interaction mechanisms of compounds binding to DNA and enabling the screening and evaluation of the effect caused to DNA by radicals and health hazardous compounds. Oxidants, particularly reactive oxygen species (ROS), play an important role in dsDNA oxidative damage which is strongly related to mutagenesis, carcinogenesis, autoimmune inflammatory, and neurodegenerative diseases. The hydroxyl radical is considered the main contributing ROS to endogenous oxidation of cellular dsDNA causing double-stranded and single-stranded breaks, free bases, and 8-oxoguanine occurrence. The dsDNA-electrochemical biosensor was used to study the interaction between dsDNA immobilized on a boron-doped diamond electrode surface and in situ electrochemically generate hydroxyl radicals. Non-denaturing agarose gel-electrophoresis of the dsDNA films on the electrode surface after interaction with the electrochemically generated hydroxyl radicals clearly showed the occurrence of in situ dsDNA oxidative damage. The importance of the dsDNA-electrochemical biosensor in the evaluation of the dsDNA-hydroxyl radical interactions is clearly demonstrated.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号