首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Water, solute, and segmental dynamics in polysaccharide hydrogels
Authors:Cavalieri Francesca  Chiessi Ester  Finelli Ivana  Natali Francesca  Paradossi Gaio  Telling Mark F
Institution:Dipartimento di Chimica, University of Rome Tor Vergata, Via della Ricerca Scientifica, Rome 00173, Italy.
Abstract:Polysaccharide hydrogels have found several applications in the food industry, in biomedicine, and cosmetics. The study of polysaccharide hydrogels offers a challenging scenario of intrinsic heterogeneities in the crosslinking density and large time and space ranges that characterize a number of dynamic processes entailing segmental motions, water diffusion, and small-molecule diffusion. The understanding of such complex features is essential because of the extensive use of polysaccharidic moieties in the food industry, biomedical devices, and cosmetics. The study of phenomena occurring at the nanoscale to the mesoscale requires the combination of investigative tools to probe different time and distance scales and the structural characterization of the networks by established methodologies such as swelling and elastic modulus measurements. Elastic and quasielastic neutron scattering, and fluorescence recovery after photobleaching are emerging methodologies in this field. In this feature article we focus, somewhat arbitrarily, on these new approaches because other techniques, such as low-resolution proton NMR relaxometry and rheology, have been already described thoroughly in the literature. Case examples of polysaccharide hydrogels studied by neutron scattering and fluorescence recovery are presented here as contributions to the comprehension of the dynamic behavior of physical and chemical hydrogels based on polysaccharides. Quasielastic incoherent neutron scattering experiment on a Sephadex hydrogel sample at different temperatures.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号