首页 | 本学科首页   官方微博 | 高级检索  
     


A quantum-chemical study of dinitrogen reduction at mononuclear iron-sulfur complexes with hints to the mechanism of nitrogenase
Authors:Reiher Markus  Hess Bernd Artur
Affiliation:Lehrstuhl für Theoretische Chemie Universit?t Erlangen-Nürnberg, Egerlandstrasse 3 91058 Erlangen, Germany. markus.reiher@chemie.uni-erlangen.de
Abstract:The mechanism of biological dinitrogen reduction is still unsolved, and the structure of the biological reaction center, the FeMo cofactor with its seven iron atoms bridged by sulfur atoms, is too complicated for direct attack by current sophisticated quantum chemical methods. Therefore, iron-sulfur complexes with biologically compatible ligands are utilized as models for studying particular features of the reduction process: coordination energetics, thermodynamic stability of intermediates, relative stability of isomers of N2H2, end-on versus side-on binding of N2, and the role of states of different multiplicity at a single iron center. From the thermodynamical point of view, the crucial steps are dinitrogen binding and reduction to diazene, while especially the reduction of hydrazine to ammonia is not affected by the transition metal complex, because the complex-free reduction reaction is equally favored. Moreover, the abstraction of coordinated ammonia can be easily achieved and the complex is recovered for the next reduction cycle. Our results are discussed in the light of studies on various model systems in order to identify common features and to arrive at conclusions which are of importance for the biological mechanism.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号