首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Extracting covalent and ionic structures from usual delocalized wave functions: the electron-expansion methodology
Authors:Papanikolaou P  Karafiloglou P
Institution:Department of General and Inorganic Chemistry, Faculty of Chemistry, POB 135, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.
Abstract:We present easily programmable expansions, allowing the calculation of the weights of local covalent and ionic structures of a chemical bond from usual delocalized wave functions; they are obtained in the framework of the electron-expansion methodology, in which the hole conditions (involved by definition in a covalent or ionic structure) are expanded in terms involving only electrons. From the derived relations, true for both HF and correlated levels, one can also express the covalency/ionicity and the localization of a usual two-electron two-center (2e/2c) bond in terms of electronic populations. The three-electron populations are crucial for bond localization. On the contrary, in 2e/2c bonding, and particularly in Charge-Shift bonds (which show enhanced covalent-ionic interactions) although the three-electron populations can be non-negligible, they are not important for the covalency/ionicity of these bonds. Numerical applications and discussion are given for correlated MO wave functions of butadiene, hexatriene, and pyrrole molecules on the basis of both natural atomic orbitals (NAOs) (orthogonal orbitals) and pre-NAOs (nonorthogonal orbitals).
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号