首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Sorption and desorption of phenanthrene onto iron, copper, and silicon dioxide nanoparticles
Authors:Fang Jing  Shan Xiao-quan  Wen Bei  Lin Jin-ming  Lu Xian-cai  Liu Xian-dong  Owens Gary
Institution:State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China.
Abstract:The sorption and desorption of phenanthrene by three engineered nanoparticles including nanosize zerovalent iron (NZVI), copper (NZVC), and silicon dioxide (NSiO2) were investigated. The sorption of phenanthrene onto NSiO2 was linear and reversible due to the hydrophilic properties of NSiO2. In comparison, sorption of phenanthrene onto NZVI and NZVC was nonlinear and irreversible, which was potentially due to the existence of significantly heterogeneous surface energy distribution patterns detected by a standard molecular probe technique. Naphthalene exerted significant competitive sorption with phenanthrene for NZVI and NZVC, and the isotherm of phenanthrene changed from being significantly nonlinear to nearly linear when naphthalene was simultaneously absorbed. A surface adsorption mechanism was proposed to explain the observed sorption and competition of phenanthrene on both NZVI and NZVC. In contrast, no competition was observed for sorption onto NSiO2. The sorption of phenanthrene on all three nanoparticles significantly decreased with increasing pH. The sorption irreversibility of phenanthrene on NZVI and NZVC were significantly enhanced with decreasing pH. A pH-dependent hydrophobic effect and dipole interactions between the charged surface (electron acceptors) and phenanthrene with electron-rich pi systems (electron donors) were proposed to explain the observed pH-dependent sorption.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号