首页 | 本学科首页   官方微博 | 高级检索  
     


Membrane characterization and solute diffusion in porous composite nanocellulose membranes for hemodialysis
Authors:Natalia Ferraz  Anastasiya Leschinskaya  Farshad Toomadj  Bengt Fellström  Maria Strømme  Albert Mihranyan
Affiliation:1. Nanotechnology and Functional Materials, Department of Engineering Sciences, Uppsala University, Box 534, 75121, Uppsala, Sweden
2. Renal Medicine, Department of Medical Sciences, Uppsala University Hospital, Akademiska Sjukhuset, 75181, Uppsala, Sweden
Abstract:The membrane and solute diffusion properties of Cladophora cellulose and polypyrrole (PPy) functionalized Cladophora cellulose were analyzed to investigate the feasibility of using electroactive membranes in hemodialysis. The membranes were characterized with scanning electron microscopy, ζ-potentiometry, He-pycnometry, N2 gas adsorption, and Hg porosimetry. The diffusion properties across the studied membranes for three model uremic toxins, i.e. creatinine, vitamin B12 and bovine serum albumin, were also analyzed. The characterization work revealed that the studied membranes present an open structure of weakly negatively charged nanofibers with an average pore size of 21 and 53 nm for pristine cellulose and PPy-Cladophora cellulose, respectively. The results showed that the diffusion of uremic toxins across the PPy-Cladophora cellulose membrane was faster than through pure cellulose membrane, which was related to the higher porosity and larger average pore size of the former. Since it was found that the average pore size of the membranes was larger than the hydrodynamic radius of the studied model solutes, it was concluded that these types of membranes are favorable to expand the Mw spectrum of uremic toxins to also include conditions associated with accumulation of large pathologic proteins during hemodialysis. The large average pore size of the composite membrane could also be exploited to ensure high-fluxes of solutes through the membrane while simultaneously extracting ions by an externally applied electric current.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号