首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Impacts of some macromolecules on the characteristics of hydrogels prepared from pineapple peel cellulose using ionic liquid
Authors:Xiuyi Hu  Juan Wang  Huihua Huang
Institution:1. Department of Food Science and Engineering, South China University of Technology, Wushan Road 381#, Guangzhou, Guangdong, China
Abstract:Composite hydrogels were prepared from pineapple peel cellulose with the combinations of polyethylene glycol (PEG), polyvinyl alcohol (PVA), к-carrageenan (CN), or soluble starch (SH) in 1-allyl-3-methylimidazolium chloride solvent. Impacts of these macromolecules on the texture profile analysis (TPA) parameters, equilibrium swelling ratio (ESR), and sodium salicylate (NaSA) load of the prepared hydrogels were studied. The NaSA release kinetics of the composite hydrogels were also compared. The composite hydrogels exhibited differences in Fourier transform infrared spectroscopy (FTIR), TPA parameters, ESR, NaSA load ratio, and release kinetics. CN addition increased the hardness of the hydrogels, while PEG played an opposite role. SH and PVA could decrease hardness, gumminess, and resilience, and SH could increase the springiness and cohesiveness of the hydrogels. Most of the composite hydrogels exhibited the same basic FTIR features as the simple hydrogel. Freeze-dried composite hydrogels exhibited a markedly higher ESR than the oven-dried ones, and additions of PEG, PVA, CN, and SH showed the same effect. Addition of the PEG and PVA combination could lower the ESR of the hydrogels, whereas additions of the PEG and CN combination or PEG and SH combination could markedly increase the ESR of the hydrogels. Addition of PEG, PVA, CN, and SH respectively could increase the NaSA load ratio of the hydrogels. Oven-drying treatment, additions of the PEG and PVA combination or PEG and CN combination were propitious for extending the NaSA fast-release phase of the hydrogels.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号