首页 | 本学科首页   官方微博 | 高级检索  
     

基于提升方案的多光谱遥感图像有损压缩算法
引用本文:田宝凤,孙荣春,徐抒岩. 基于提升方案的多光谱遥感图像有损压缩算法[J]. 光学技术, 2006, 32(Z1)
作者姓名:田宝凤  孙荣春  徐抒岩
摘    要:在分析多光谱遥感图像谱间和空间数据特点的基础上,提出了一种DPCM线性预测与基于提升方案的整数小波变换相结合的多光谱遥感图像有损压缩算法。在谱间采用DPCM预测去除谱间相关性;在谱内采用整数小波变换去除空间相关性,根据不同子带对目标识别的重要程度,选择不同的量化阈值和量化步长进行量化,并分别对各个子带量化后的数据和重要图表采用固定比特平面编码和游程编码,实现高效的多光谱遥感图像压缩。实验结果表明,该算法在一定的压缩比下,重构图像具有较高的峰值信噪比,并且算法硬件实现简单,对内存的需求低。

关 键 词:有损压缩  多光谱遥感图像  整数小波变换  DPCM预测

Lossy compression algorithm of remotely sensed multispectral images based on lifting scheme
TIAN Bao-feng,SUN Rong-chun,XU Shu-yan. Lossy compression algorithm of remotely sensed multispectral images based on lifting scheme[J]. Optical Technique, 2006, 32(Z1)
Authors:TIAN Bao-feng  SUN Rong-chun  XU Shu-yan
Abstract:On the basis of analyzing characteristic of spectral bands and spatial dimensions data of remotely sensed multispectral images,a lossy compression algorithm of remotely sensed multispectral hybrid DPCM and integer wavelet transform is proposed.Between spectral bands,DPCM prediction approach is applied to remove the correlation between spectral bands.In spectral band,integer wavelet transform is applied to remove the correlation of spatial.According to the important degree of the different subbands for target recognition,different quantification threshold values and quantification steps are chosen in the quantification,and fixed bit-plane coding and RLE are individually used to quantify data of every subband and important graph,which realizes the high efficiency compression of remotely sensed multispectral images.The result of experiment shows that reconstructed image by the algorithm has higher PSNR in certain compression ratio.In addition,the algorithm requires small storage and is easy to be realized in hardware.
Keywords:lossy compression  remotely sensed multispectral images  integer wavelet transform  DPCM prediction
本文献已被 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号