首页 | 本学科首页   官方微博 | 高级检索  
     

表面物理化学性质对不同晶型MnO_2的NH_3-SCR活性影响(英文)
摘    要:氮氧化物(NO_x)是主要的大气污染物之一,给环境和人类健康带来巨大危害.NH_3选择性催化还原(NH_3-SCR)技术是处理氮氧化物最有效的方法之一,现已被广泛用于氮氧化物的处理,其中SCR催化剂是该技术的核心.锰基催化剂具有相对较好的低温催化活性,而其中MnO_2的催化活性最为突出.二氧化锰可以形成多种晶型,如α,β,δ和γ.晶相结构可显著影响催化活性,不同晶型的MnO_2具有不同的催化性能,其在电化学催化和CO催化方面已经得到广泛应用和研究.然而对于不同晶型MnO_2的NH_3低温选择催化还原NO_x的催化活性和催化机理的研究特别少.α-,β-,γ-和δ-MnO_2具有不同的晶型尺寸,并在气体吸附、气体扩散和催化反应过程中表现出较大差异.因此,有必要揭示不同MnO_2晶型表面物理化学性质与SCR催化活性之间的关系.本文成功制备出四种不同晶型的纳米MnO_2(α,β,δ和γ型)催化剂,并测试了其NH_3低温选择催化活性.此外,对催化剂进行了XRD,SEM,Raman,TG,BET,NH_3-TPD,XPS和H_2-TPR等一系列测试表征,探究了导致不同晶型MnO_2的NH_3催化还原NO_x差异的主要原因.结果表明,四种不同晶型纳米MnO_2的NH_3-SCR催化活性顺序为γ-MnO_2α-MnO_2δ-MnO_2β-MnO_2.γ-MnO_2和α-MnO_2上的NO_x转化率在140–200°C范围内可达90%以上,但β-MnO_2在200°C只有40%的NO_x转化率.分析表明,γ-MnO_2和α-MnO_2的纳米线形貌具有较好的分散性,导致它们的比表面积较高,这为活性位点提供了更多的分散空间,有利于活性气体分子的吸附和催化过程的进行.H_2-TPR和NH_3-TPD结果显示,γ-MnO_2和α-MnO_2比其他两种晶型的MnO_2催化剂具有较好的可还原性和更多更强的酸性位点.XPS分析结果表明,在γ-MnO_2和α-MnO_2表面存在更多的化学吸附氧.基于上述这些有利的物理化学性质,γ-MnO_2和α-MnO_2催化剂显示出较好的低温NH_3-SCR活性.尽管δ-MnO_2的比表面积较小,但是NH_3-TPD结果显示其层状形貌的纳米晶体表面分散有较多的酸性位点,从而有效提升了其催化效果,同时其较好的氧化还原性能也有助于催化性能的改善.

本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号