首页 | 本学科首页   官方微博 | 高级检索  
     


Elastic waves guided by a material interface
Affiliation:1. Department of Mechanics, Tianjin University, Tianjin 300350, China;2. Tianjin Key Laboratory of Modern Engineering Mechanics, Tianjin 300350, China;3. School of Computing and Mathematics, Keele University, Staffordshire ST5 5BG, UK
Abstract:The propagation of interfacial small-amplitude waves along a rectilinear thin film separating two pre-stressed, incompressible, elastic media is addressed. The film is modelled as a material surface possessing its own mass density and normal and flexural stiffnesses. It is shown that these features induce dispersion as the obtained secular equations are polynomials of the second degree in the wavenumber when bending stiffness is absent (membrane-like interface), and of the fourth degree otherwise (plate-like interface). In both case, beyond the modified Stoneley mode, a bending mode for the interface, an additional propagating wave can exist, with amplitude polarized along the interface (extensional mode). The associated bifurcation problem is analyzed with focus on the effects of compressive residual forces at the interface. The buckling strain of a compressed metal layer embedded in an elastomeric medium is computed also with an exact approach, to provide the range of validity of the proposed simplified model of material interface.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号