首页 | 本学科首页   官方微博 | 高级检索  
     

基于ICT切片图像相邻层信息的缺陷自动识别方法
引用本文:方黎勇, 李柏林, 王凯, 等. 基于ICT切片图像相邻层信息的缺陷自动识别方法[J]. 强激光与粒子束, 2009, 21(07).
作者姓名:方黎勇  李柏林  王凯  雷华堂  陈黎丽
作者单位:1.西南交通大学 机械工程学院, 成都 61 0031
摘    要:现有的工业计算机断层成像(ICT)图像缺陷识方法中,多采用对单张图像进行孤立评判方法,此类方法未能考虑到单张图像在相邻层图像信息关联性,因而易将孤立的噪音视为缺陷,造成误判。为解决这一问题,提出一种基于序列ICT切片图像自动识别方法,该方法将识别过程分为两步:单张图像的潜在缺陷提取和相邻层图像缺陷的匹配。第一步运用传统方法识别出每张图像中所有潜在缺陷;第二步根据真缺陷在相邻层具有匹配关系而伪缺陷则相对孤立的特点,通过分步匹配的方法确定每张图像上所有潜在缺陷在相邻层图像上的匹配关系,区分出真伪缺陷。最后通过实例验证表明:利用该方法可以有效得提高真缺陷得识别率,降低误判率。

关 键 词:缺陷识别   ICT切片图像   拟合椭圆   轮廓匹配   分枝

Automated defect recognition method based on neighbor layer slice images of ICT
fang liyong, li bailin, wang kai, et al. Automated defect recognition method based on neighbor layer slice images of ICT[J]. High Power Laser and Particle Beams, 2009, 21.
Authors:fang liyong  li bailin  wang kai  lei huatang  chen lili
Affiliation:1. School of Mechanical Engineering,Southwest Jiaotong University,Chengdu 610031,China
Abstract:The current automated defect recognition of industrial computerized tomography(ICT) slice images is mostly carried out in individual image. Certain false detections would exist for some isolated noises can not be wiped off without considering the information of neighbor layer images. To solve this problem, a new automated defect recognition method is presented based on a two-step analysis of consecutive slice images. First, all potential defects are segmented using a classic method in each image. Second, real defects and false defects are recognized by all potential defect matching of neighbor layer images in two steps based on the continuity of real defects characteristic and the non-continuity of false defects between the neighbor images. The method is verified by experiments and result
Keywords:defect recognition  slicie images of industrial computerized tomography  ellipse fitting  contour matching  branching
点击此处可从《强激光与粒子束》浏览原始摘要信息
点击此处可从《强激光与粒子束》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号