首页 | 本学科首页   官方微博 | 高级检索  
     


Determination of enantiomeric excess for organic primary amine compounds by chiral recognition fast-atom bombardment mass spectrometry
Affiliation:1. Dipartimento di Scienze Chimiche, Università di Catania, V.le Andrea Doria 6, 95125, Catania, Italy;2. Department of Chemistry, Columbia University, 3000, Broadway, NY, 10027, USA
Abstract:Enantiomeric excess (ee) of organic primary amine compounds such as phenylglycine methyl ester hydrochloride (2) has been determined by fast-atom bombardment (FAB) mass spectrometry (NBA matrix). Chiral recognition in host–guest complexation systems between crown ethers [H] and amino acid ester ammonium ions [G] has been extended to the ee determination. The method characteristically uses a 1/1 mixture of a pair of enantiomeric hosts whose enantiomer is isotopically labeled [(RRRR)-1 and (SSSS)-1-d6]. Chiral recognition of a given guest is simply measured with the given host–pair reagent from the relative peak intensities of the two corresponding diastereomeric host–guest complex ions in I[(HRRRR · G)+]/I[(HSSSS-d6 · G)+ = IR/IS-d6, so called IRIS value. The IRIS value varies in a linear fashion with the ee quantitiy of 2 and produces a symmetric linear V-shaped plot, indicating that in the case of a primary amine guest (such as 2) with unknown ee, one can determine the ee by this type of chiral recognition FAB mass spectometry. Further, based on the observed concentration effects on the IRIS values, it is suggested that the present IRIS value reflects the concentration ratio of the diastereomeric complex ions formed in the matrix.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号