首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Correction of instrumentally produced mass fractionation during isotopic analysis of fe by thermal ionization mass spectrometry
Institution:1. Department of Geology and Geophysics, University of Wisconsin, Madison, WI 53706, USA;1. Institut für Planetologie, University of Münster, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany;2. Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, United States;1. Institut für Planetologie, University of Münster, Wilhelm-Klemm Str. 10, D-48149 Münster, Germany;2. Earth and Planets Laboratory, Carnegie Institution of Washington, Washington, DC 20015, USA;3. Université de Bretagne Occidentale, Institut Universitaire Européen de la Mer, Place Nicolas Copernic, F-29280 Plouzané Cedex, France;4. Institute of Geochemistry and Petrology, ETH Zürich, Clausiusstraße 25, CH-8092 Zurich, Switzerland;5. VKTA – Strahlenschutz, Analytik & Entsorgung Rossendorf e. V, Bautzner Landstraße 400, D-01328 Dresden, Germany;6. Universität Göttingen, Geowissenschaftliches Zentrum, Goldschmidtstr. 1, D-37077 Göttingen, Germany;7. Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, D-37077 Göttingen, Germany;8. Institut für Geologie, Mineralogie und Geophysik, Ruhr-Universität Bochum, D-44780 Bochum, Germany;9. CNRS, Aix Marseille Univ, IRD, Coll France, INRAE, CEREGE, Aix-en-Provence, France;10. Helmholtz-Zentrum Dresden-Rossendorf, Helmholtz Institute Freiberg for Resource Technology, Chemnitzer Str. 40, D-09599 Freiberg, Germany;11. Friedrich-Schiller-Universität Jena, Institut für Geowissenschaften, Carl-Zeiss-Promenade 10, D-07745 Jena, Germany;12. German Fireball Network, Lilienstraße 3, D-86156 Augsburg, Germany;13. Helmholtz-Zentrum München, German Research Center for Environmental Health, Analytical BioGeoChemistry, Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany;14. University of Arizona AMS Laboratory, 1118 East Fourth St, Tucson, AZ 85721, USA;15. Isotope Climatology and Environmental Research Centre (ICER), Institute for Nuclear Research, Hungarian Academy of Sciences, Bem ter 18/c, 4026 Debrecen, Hungary;p. School of Physical Sciences, The Open University, Milton Keynes MK7 6AA, UK;q. Department of Earth Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK;r. Department of Nuclear Physics, Research School of Physics, The Australian National University, Canberra, ACT 2601, Australia;s. Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, D-01328 Dresden, Germany;t. Institut für Geowissenschaften, Klaus-Tschira-Labor für Kosmochemie, Universität Heidelberg, Im Neuenheimer Feld 234-236, D-69120 Heidelberg, Germany;u. Chair of Analytical Food Chemistry, Technische Universität München, D-85354 Freising-Weihenstephan, Germany;v. RiesKraterMuseum, Eugene-Shoemaker-Platz 1, D-86720 Nördlingen, Germany;1. Department of the Geophysical Sciences, The University of Chicago, Chicago, IL 60637, USA;2. Chicago Center for Cosmochemistry, The University of Chicago, Chicago, IL 60637, USA;3. Robert A. Pritzker Center for Meteoritics and Polar Studies, Field Museum of Natural History, Chicago, IL, USA;4. Enrico Fermi Institute, The University of Chicago, Chicago, IL 60637, USA;5. Hawai‘i Institute of Geophysics and Planetology, School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, Honolulu, HI, USA;6. Institute of Meteoritics, University of New Mexico, Albuquerque, NM 87131, USA
Abstract:High-precision (∼0.015%/mass) isotope ratio measurements of Fe may be obtained by using magnetic-sector thermal ionization mass spectrometry (TIMS), where rigorous correction of instrumentally produced mass fractionation can be made. Such corrections are best done by using a double-spike approach, which was first introduced several decades ago. However, previous derivations do not lend themselves to the high-precision isotope analysis that modern TIMS instruments are capable of because of various assumptions of mass fractionation laws or constant atomic weights. Moreover, some of these previous approaches took iterative approaches to the calculation, and none presented detailed error propagations. Here we present a completely general derivation to the double-spike approach that may be used for any appropriate isotope system and is applicable to the mass fractionation laws that are known to occur in TIMS. In addition, we present an assessment of error propagation as a function of algorithm and spike isotope composition. This approach has produced the highest precision Fe isotope ratio measurements yet reported, on the order of ±0.2 to 0.3 per mil for the 54Fe/56Fe ratio, that correct for instrumentally produced mass fractionation and yet retain natural, mass-dependent isotopic variations in samples.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号