首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Rupture kinetics of liquid bridges during a pulling process: a kinetic density functional theory study
Authors:Men Yumei  Zhang Xianren  Wang Wenchuan
Institution:Division of Molecular and Materials Simulation, Key Laboratory for Nanomaterials, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, China.
Abstract:Capillary bridge is a common phenomenon in nature and can significantly contribute to the adhesion of biological and artificial micro- and nanoscale objects. Especially, it plays a crucial role in the operation of atomic force microscopy (AFM) and influences in the measured force. In the present work, we study the rupture kinetics and transition pathways of liquid bridges connecting an AFM tip and a flat substrate during a process of pulling the tip off. Depending on thermodynamic conditions and the tip velocity, two regimes corresponding to different transition pathways are identified. In the single-bridge regime, the initial equilibrium bridge persists as a single one during the pulling process until the liquid bridge breaks. While, in the multibridge regime the stretched liquid bridge transforms into an intermediate state with a collection of slender liquid bridges, which then break gradually during the pulling process. Moreover, the critical rupture distance at which the bridges break changes with the tip velocity and thermodynamic conditions, and its maximum value occurs near the boundary between the single-bridge regime and the multibridge regime, where the longest range capillary force is produced. In this work, the effects of tip velocity, tip size, tip-fluid interaction, and humidity on rupture kinetics and transition pathways are also systematically studied.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号